VACCINE POINTS

"Vaccine Points" is a bi-monthly communication distributed by the Hawaii Department of Health to all participating Vaccines for Children (VFC) providers.

Test your vaccine knowledge.

Question:

Which of the following is/are true regarding conjugated polysaccharide vaccines? Select all that apply.

- a) The immune response to a conjugated polysaccharide vaccine is T-cell independent
- b) The first conjugated polysaccharide vaccine was licensed in 2000
- c) Conjugation is a process in which the polysaccharide is chemically combined with a protein molecule
- d) Conjugated polysaccharide vaccines are not consistently immunogenic in children younger than 2 years of age
- e) None of the above

Immunization Action Coalition Vaccine Timeline http://www.immunize.org/timeline/

https://www.cdc.gov/vaccines/pubs/pinkbook/prinvac.html

Epidemiology and Prevention of Vaccine-Preventable Diseases (Pink Book), 13th edition

conces:

The first conjugated polysaccharide vaccine was for Haemophilus influenzae type B, licensed in 1987 (ProHIBIT).

antibody booster response to multiple doses of vaccine.

Conjugation, a process in which the polysaccharide is chemically combined with a protein molecule changes the immune response from T-cell independent to T-cell dependent, leading to increased immunogenicity in infants and

activity than that induced by protein antigens.

The immune response to a pure polysaccharide vaccine is typically T-cell independent, which means that these vaccines are able to stimulate B cells without the assistance of T-helper cells. Pure polysaccharide vaccines are not consistently immunogenic in children younger than 2 years of age. Repeat doses of pure polysaccharide vaccines usually do not cause a booster response. Also, antibody induced with polysaccharide vaccines has less functional

